Low pH induces co-ordinate regulation of gene expression in oesophageal cells.
نویسندگان
چکیده
The development of gastro-oesophageal reflux disease (GORD) is known to be a causative risk factor in the evolution of adenocarcinoma of the oesophagus. The major component of this reflux is gastric acid. However, the impact of low pH on gene expression has not been extensively studied in oesophageal cells. This study utilizes a transcriptomic and bioinformatic approach to assess regulation of gene expression in response to low pH. In more detail, oesophageal adenocarcinoma cell lines were exposed to a range of pH environments. Affymetrix microarrays were used for gene-expression analysis and results were validated using cycle limitation and real-time RT-PCR analysis, as well as northern and western blotting. Comparative promoter transcription factor binding site (TFBS) analysis (MatInspector) of hierarchically clustered gene-expression data was employed to identify the elements which may co-ordinately regulate individual gene clusters. Initial experiments demonstrated maximal induction of EGR1 gene expression at pH 6.5. Subsequent array experimentation revealed significant induction of gene expression from such functional categories as DNA damage response (EGR1-4, ATF3) and cell-cycle control (GADD34, GADD45, p57). Changes in expression of EGR1, EGR3, ATF3, MKP-1, FOSB, CTGF and CYR61 were verified in separate experiments and in a variety of oesophageal cell lines. TFBS analysis of promoters identified transcription factors that may co-ordinately regulate gene-expression clusters, Cluster 1: Oct-1, AP4R; Cluster 2: NF-kB, EGRF; Cluster 3: IKRS, AP-1F. Low pH has the ability to induce genes and pathways which can provide an environment suitable for the progression of malignancy. Further functional analysis of the genes and clusters identified in this low pH study is likely to lead to new insights into the pathogenesis and therapeutics of GORD and oesophageal cancer.
منابع مشابه
1Hz 100mT Electromagnetic Field Induces Apoptosis in Breast Cancer Cells Through Up-Regulation of P38 and P21
Introduction: Breast cancer is the most common cause of cancer-related death among women. Recently, extremely low-frequency electromagnetic field (ELF-EMF) has been proposed as a new interfering agent with future therapeutic potentials. Many studies have revealed that cellular processes such as apoptosis in breast cancer are affected by ELF-EMFs. However, more researches are needed to clarify t...
متن کامل1Hz 100mT Electromagnetic Field Induces Apoptosis in Breast Cancer Cells Through Up-Regulation of P38 and P21
Introduction: Breast cancer is the most common cause of cancer-related death among women. Recently, extremely low-frequency electromagnetic field (ELF-EMF) has been proposed as a new interfering agent with future therapeutic potentials. Many studies have revealed that cellular processes such as apoptosis in breast cancer are affected by ELF-EMFs. However, more researches are needed to clarify t...
متن کاملRat adipose-derived mesenchymal stem cells aging reduction by zinc sulfate under extremely low frequency electromagnetic field exposure is associated with increased telomerase reverse transcriptase gene expression
Zinc as an essential trace element was reported to be involved in regulation of the growth and aging of cells. In this study, rat adipose-derived mesenchymal stem cells were exposed to extremely low frequency electromagnetic field (ELF-EMF) of 50 Hz and 20 mT to evaluate whether exposure to ELF-EMF in the presence of zinc sulfate (ZnSO4) affects the telomerase reverse transcriptase (...
متن کاملSuppressive Effect of Constructed shRNAs against Apollon Induces Apoptosis and Growth Inhibition in the HeLa Cell Line
Background: Cervical cancer is the second most common female cancer worldwide. Inhibitors of apoptosis proteins (IAPs) block apoptosis; therefore, therapeutic strategies targeting IAPs have attracted the interest of researchers in recent years. Apollon, a member of IAPs, inhibits apoptosis and cell death. RNA interference is a pathway in which small interfering RNA (siRNA) or shRNA (short hairp...
متن کاملEffects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells
Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 27 2 شماره
صفحات -
تاریخ انتشار 2006